If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+60X-14000=0
a = 1; b = 60; c = -14000;
Δ = b2-4ac
Δ = 602-4·1·(-14000)
Δ = 59600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{59600}=\sqrt{400*149}=\sqrt{400}*\sqrt{149}=20\sqrt{149}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{149}}{2*1}=\frac{-60-20\sqrt{149}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{149}}{2*1}=\frac{-60+20\sqrt{149}}{2} $
| 2+3=3x15= | | 13x+15=7x-17 | | 2x+21=3X-13 | | 7*(x+12)-108=12*(x-7) | | 0.45/x=2.05 x= | | 4x+2/3=31/2 | | 2x+1,000=55,000 | | X^2+8x+16=12x^2 | | 4x^2-12×+9=0 | | 2x3=9 | | -5(6x-8)+6=30x+46 | | 0.50x+0.35(50)=33.5 | | 2(5-2x)=4(5-2x) | | y=9.92/12.8 | | 7x+4x+14=12x+12 | | 3x+-2=18 | | 3.5x-3=6x-10 | | -8(x-3)=2(x32) | | 74+(4x-5)=9x-11 | | 3^x-7=81 | | 2x^2-1x-150=0 | | g/9=14 | | 0.025x+5.579=0.010x+5.573 | | 4(x+2)+4=6x-2(-4+x) | | 8x18=58 | | 138-(6x+6)=18x | | 2y^2*3y-5=4 | | 180=6x(x-2) | | 138-(6x+6)=18 | | X+2x+3= | | 10^x-5=10^7 | | 138-6=24x |